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Table 1
Effective elastic constants and their logarithmic pressure derivatives for Se and Te

\ 7 ‘ 1dc,
C (10" dyn/cm?) ‘ ¢ dp
‘ (10-2 kbar-1)

mode?®) — S ———— S— — =
Te Se
o — ——  Te Se

‘ this work ' ref. [17] | this work | ref. [19] | ref. [18]

|
TAZ); 0 7.05 7.22 8.20 8.02 7.41 1.79 2.1
N2, G | 319 3.12 1.82 1.83 1.49 2.47 5.1
T(X),€y | 1330 3.27 ‘ 1.917) 1.87 3.78 5.2
FI(X),C; | 3.66 3.72 2.12%) 1.80 2.77 5.1%)
ST(X), C 0.60 0.60 0.52") 0.24 2.74 3.7°)
QL(Y). C, ‘ 4.40 4.42 2.49 2.33 3.30 5.2
QT(Y), Cs 2.00 1.95 1.24 1.03 3.01 5.0
T), O 1.25 1.21 0.82 0.55 3.30 4.2
@l 1.197) 1.24 0.62") 0.62
s \ 2319 | 249 239 | 2.60 |

%) Designations: L longitudinal, T transverse, FT fast transverse, ST slow transverse,
QL quasi-longitudinal, QT quasi-transverse, (X). (Y), (Z) direction of phase velocity; C,
to O are defined in equations (1) and (2).

by “Calculated from equations (1) and (2).

¢) Calculated from the volume compressibilities: Te: 0.52 x 1071 cm?/dyn [7]; Se:
0.94 x 10711 cm?/dyn [9]. 1

4) The linear compressibilities used are (in units of 10~ kbar1): — == d_p = 2.8 (Te),
5.7 (Se); — lc % = —0.4 (Te), —2.0 (Se) [7 to 9]. Due to the relative large uncertainty

P
in the compressibilities of Se the pressure derivatives in this column can have an uncer-
tainty of as much as 259, for Cy3; but typically less than 109, for the basal plane modes.

¢) Calculated from equations (3) to (5).

for the quasi-longitudinal (+) and quasi-transverse (—) modes in the Y-direc-
tion. (Note that the relationship given in reference [17] for U,C; is obviously in
error.) With the present elastic constants and the volume compressibility by
Bridgeman [7] (0.52 x 1071 ¢cm?/dyn), we obtain a value for (3 as shown in
Table 1.

For Se there exists in the literature a complete set of elastic constants by
Mort [18], and measurement only along the trigonal axis (i.e., Cy and Cy,) by
Vedam et al. [19]. Our data for the latter are in very good agreement with those
by Vedam et al. but Mort’s values are lower by 10 to 209%,. This is typical for
his data when compared with the present ones, also for the X- and Y-direction.
Our agreement with Vedam et al. for the Z-direction in Se, and the good agree-
ment with Malgrange et al. for Te together with the fact that we performed all
our measurements consistently, without variation in technique, lead us to believe
that our data for the elastic constants in Se along with those of Vedam et al.
are the more accurate. Using the present data, and a volume compressibility of
0.94 % 1071 ¢cm?/dyn (see [7] and the discussion in Section 4) we obtain an
estimate for €}, (see Table 1) in Se.
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Table 2

Consistency checks on the elastic constants and on their pressure derivatives in Te (see
equations (3) to (5) in the main text). The elastic constants have the units (101! dyn/cm?)

O+ G = 4.26 ’ K, + K, =118
O v G =444 | K+ K =120

O + €, —6.40 | K, + K, =205
0400, =649 | Ky + Ky, =204

[(02 == 03)2 iy (04 - 5)2]112 = 1.90 [(02_03) (Kz_Ks) O (04‘05) (K4_K5)]1/2 9.4
[(044 =3 033)2 == (044 - Cn)2]1/2 = 1.91 [(044_086) (K44—Kse)_(044—0u) (Ku—Ku)]lfﬁ

The three redundancies in measurement of the absolute values and of the
pressure coefficients for the elastic constants in Te allow us to perform three
checks on internal consistency for both. Using the notation C, and K,=(d/dp)C,
for the absolute values and the pressure coefficients of the elastic constants
respectively, we have the following relationships:

C44+Cee=02 +Ca’ K44+K66=K2+K3> (3)
044+011=04+05, K44+K11=K4+K5: (4)
[(Cay — Coe)* — (Cay — Cua)?1H? = [(Cy — C5)% — (Cy — C5)*]2

[(Cas — Coo) (Kuu — Kog) — (Caa — Cnr) (Kuy — Kyy)]'2 = )
= [(Cy — C;) (K, — K;) — (Cy — Of) (K, — Ky)]V2.

The two-digit subscripts reflect the conventional notation, while €, (x =
= 2, ..., 5) are defined in (1) and (2). The square root signs in (5) are retained
to preserve consistency with (3) and (4) in evaluating the errors.

Table 2 shows that the internal consistency in our measurements is quite
satisfactory, with a maximum error of 49, in the elastic constants and in their
pressure derivatives. This is also in agreement with the maximum uncertainty
expected in our experiments. The larger relative discrepancy in the lower of
(5) is merely due to the near cancellation of large numbers inside the square
brackets. A similar uncertainty is also expected for the experimental data on
Se. However, the lack of reliable values for the linear compressibilities introduces
relatively large uncertainties in some of the logarithmic pressure derivatives of
the elastic constants (see footnote in Table 1).

4. Atomic Force Constants and the Pressure Dependence
of the Lattice Vibrations

As mentioned earlier, the qualitative features of the pressure dependence of
the long-wavelength optical and acoustical vibrations finds a natural explana-
tion in the ideas put forward, in particular by Martin and Lucovsky [5, 6]. The
optical modes tend to soften and acoustical modes stiffen due to the weakening
of the strong intrachain covalent bonds owing to transfer of electronic charge
to the weak interchain bonds as the chains are packed closer together. This can
be seen in the larger context of a progression from molecular sulfur to metallic




